Introduction | Functions | Data Structures | Demos | FAQ |
Description of the functions available in the GLFM package
function hidden = GLFM.infer(data,varargin)
% Wrapper .m function to call .cpp MATLAB wrapper (simplifies call)
% Three possible calls:
% hidden = GLFM.infer(data)
% hidden = GLFM.infer(data,hidden)
% hidden = GLFM.infer(data,hidden,params)
%
% Inputs:
% data: structure with all input data information
% (*) data.X: N*D observation matrix (raw)
% (*) data.C: 1*D string array with input data types
% (*) mandatory
%
% ------------- optional ---------------------
% hidden: hidden structure to initialize inference algorithm
% hidden.Z: feature assignment N*K matrix
% params: structure with simulation parameters and hyperparameters
% Output:
% hidden: structure with latent variables learned by the model
% (same output as GLFM.infer function).
function [Xcomplete,hidden] = GLFM.complete(data,varargin)
% Function to complete a matrix that has missing values with their MAP solution
% Possible calls:
% [Xcomplete,hidden] = GLFM.complete(data)
% [Xcomplete,hidden] = GLFM.complete(data,hidden) % init hidden.Z externaly
% [Xcomplete,hidden] = GLFM.complete(data,[],params) % struc. with parameters
% [Xcomplete,hidden] = GLFM.complete(data,hidden,params)
%
% Inputs:
% data: structure with all input data information
% (*) data.X: NxD observation matrix (raw) with missings
% (*) data.C: 1xD string array with input data types
% (*) mandatory
%
% ------------- optional ---------------------
% hidden: hidden structure to initialize inference algorithm
% hidden.Z: feature assignment N*K matrix
% params: structure with simulation parameters and hyperparameters
% Output:
% Xcomplete: NxD input matrix with imputed missing values
% hidden: structure with latent variables learned by the model
% (same output as GLFM.infer function).
function X_map = GLFM.computeMAP(C, Zp, hidden, params)
% Function to generate the MAP solution corresponding to patterns in Zp
% Inputs:
% C: 1*D string with data types, D = number of dimensions
% Zp: P * K matrix of feature activation for which to compute the MAP estimate
% (P is the number of obs.)
% hidden: structure with latent variables learned by the model
% params: structure of simulation parameters and hyperparameters
%
% Outputs:
% X_map: P*D matrix with MAP estimate
function [xd, pdf] = GLFM.computePDF(data, Zp, hidden, params, d)
% Function to generate the PDF solutions corresponding to patterns in
% Zp, and dimension d
% Inputs:
% data: data structure
% Zp: P * K matrix of patterns (P is the number of patterns)
% hidden: structure with latent variables learned by the model
% params: structure of simulation parameters and hyperparameters
% patterns: numP*K list of patterns to plot
%
% Outputs:
% xd: 1*numS where numS is the number of points to compute
% pdf: P*numS where P is the number of patterns to consider
function [] = GLFM.plotPatterns(data, hidden, params, Zp, varargin)
% Function to plot the inferred distribution and empirical histogram for each dimension of the observations.
% Inputs:
% data: data structure
% hidden: structure with latent variables learned by the model
% params: structure of simulation parameters and hyperparameters
% Zp: P * K matrix of patterns (P is the number of patterns)
% ------ (optional) ------
% colors: list of colors to plot
% styles: list of styles for each line (for plot, not bar)
% leg: legend to use (by default, use patterns as legend)
% idxD: array of dimensions to plot
%
% Outputs:
% void